EVOLUTION INTRO

Chapter 1

HISTORY

• Evolution as an idea

- Anaximander (610-546 BC)
- Aristotle (384 322 BC)
- Zhuangzi (369-286 BC)

• beginnings of "Transformism"

• Georges-Louis LeClerc, Comte de Buffon (1707-88)

SCALA NATURAE

• the "great chain of being"

- higher and lower organisms
 - hell, minerals, plants, animals, humans, angels, god
- this idea still persists!

• taxonomy

- Carolus Linnaeus (1707-1778)
 - relatedness?

Transformism

- Jean Baptiste Pierre Antoine de Monet, Chevalier de Lamarck (1744-1829)
 - inheritance of acquired characteristics

DARWIN AND WALLACE

charles darwin

- background studied medicine, ministry
- •_____ 1831 naturalist
- alfred russel wallace
 - studying biogeography in malay archipelago and indonesia
 - 1858 writes to Darwin
- Origin of Species (1859)
 - descent with modification
 - natural selection

EVOLUTIONARY THEORY

• major components of Darwin's theory (Mayr 1985)

- perpetual change "evolution as such"
- common descent
- gradualism
- populational change
- natural selection

"it is absurd to talk of one animal being higher than another" - DARWIN

GREGOR MENDEL

• particulate inheritance

- 1866 gregor mendel
- not widely cited
- very little interest

Modern Synthesis

• rediscovered in early 1900s

- Hugo de Vries, Carl Correns (1900)
- Neo-Darwinism
 - developed into modern synthesis by Fisher and Haldane
 - natural selection acts on particulate genetic inheritance
 - read Dobzhansky's 1973 paper

• fundamental principles of evolution (modern synthesis)

- 1. phenotype is distinct from genotype
- 2. acquired characteristics are not inherited*
- 3. heredity is based on discrete genes
- 4. genetic variation arises from mutation
- 5. evolution is change in a population
- 6. changes in allele frequencies may be random or not
- 7. natural selection can account for both small and large differences in species

KEY PRINCIPLES

• fundamental principles of evolution (modern synthesis)

- 8. natural selection can alter populations beyond original range of variation due to new combinations of genes
- 9. populations usually have lots of genetic variation
- 10. differences in species evolve by small steps
- 11. species represent separately evolving lineages
- 12. speciation is usually allopatric
- 13. higher taxa evolve through sequential accumulation of small differences
- 14. phylogenies can be represented as trees

KEY MISCONCEPTIONS

- in natural selection, organisms are trying to adapt orthogenesis
- evolution makes things better over time (directionality of evolution)
- fittest organisms are the strongest or healthiest
- the environment causes changes over time
- evolution explains the origin of life
- humans are no longer evolving
- there are higher and lower organisms (or traits)
 - "more" or "less evolved" organisms

