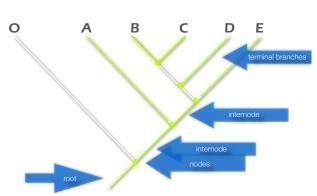

A TREE OF LIFE

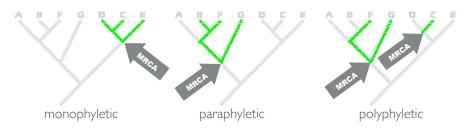
common ancestors

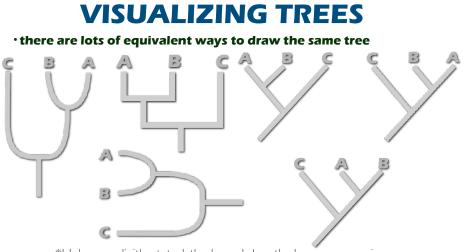
- phylogenetic trees
- LUCA last universal common ancestor
- family tree of organisms
- who is related to whom?

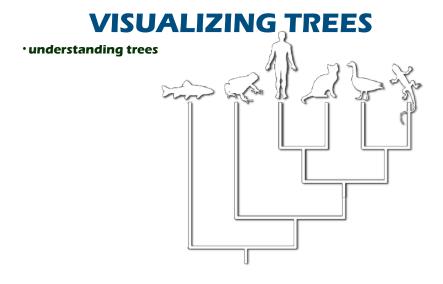

PHYLOGENETIC TREES

TREE OF LIFE

Chapter 2

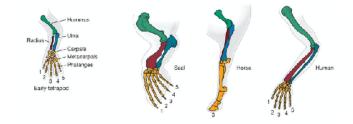

basic terminology


- root (MRCA)
 node
 internode
 terminal branch
- taxa
 - species
 - higher taxa
 - sister taxa


SYSTEMATICS

- phylogenetic trees are used create taxa
 - monophyletic
 - paraphyletic
 - polyphyletic

*Unless explicitly stated, the branch lengths have no meaning.



HOMOLOGY

· characters

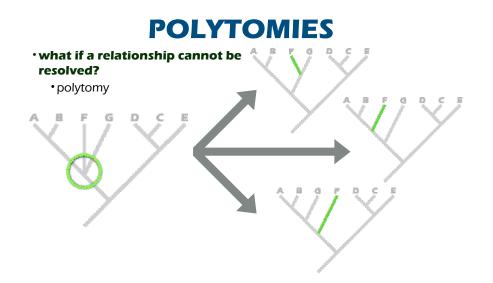
• character states/traits • can be morphological or molecular fossil evidence

homology vs. analogy (homoplasy)

BUILDING TREES

3 STEPS

- outgroup
 - an outgroup is some more distantly related taxon that is used to determine the plesiomorphic version of a character.


·ingroup

• the group we are interested in.

3 STEPS

EXCEPTIONS

sometimes, weird things happen

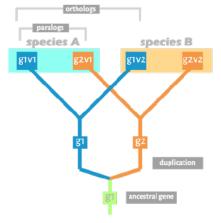
- hybrid speciation
- horizontal gene transfer

characters

outgroup (Poecilia)

Eurycea

OTHER TYPES OF TREES


gene trees

 different genes have different trees

> a gene tree may differ from a species tree

• gene duplication -

paralogsorthologs

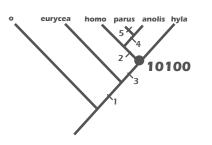
RELATIVE CHARACTER

• types of characters

older characters

 plesiomorphies
 newer characters
 apomorphies
 synapomorphies
 autapomorphies

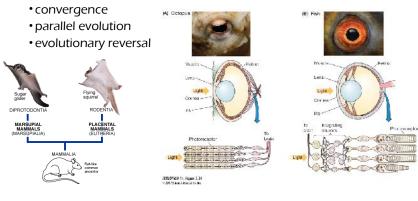
mosaic evolution


• a species in an amalgamation of many plesiomorphic and apomorphic characters

INFERRING CHARACTER STATES

mapping characters onto phylogeny

•we can infer the character state for ancestors (parsimony)


taxa	1	2	3	4	5
outgroup (Poecilia)	0	o	o	0	0
Eurycea					
Hyla					
Anolis					
Parus			1		
Homo	1	1	1	0	0

PATTERNS

homoplasy

• analogous character states have evolved in many cases

